
Lessons Learned From Developing A Streaming Data Framework for
Scientific Analysis

�

Kevin R. Wheeler
Computational Sciences Division

NASA Ames Research Center
MS 269-1 Moffett Field, CA, 94035

Kevin.R.Wheeler@nasa.gov
Mark Allan, Charles Curry

QSS Group Inc.,
MS 269-1 Moffett Field, CA 94035

Abstract

We describe the development and usage of a streaming data
analysis software framework. The framework is used for
three different applications: Earth science hyper-spectral im-
age analysis, Electromyograph pattern detection, and Elec-
troencephalogram state determination. In each application
the framework was used to answer a series of science ques-
tions which evolved with each subsequent answer. This evo-
lution is summarized in the form of lessons learned.

1 Introduction

Applying machine learning research to real-world science
problems necessitates the melding of machine learning with
the physical science domain. In working with Earth and life
scientists it has become clear that there is never enough time,
despite the interest, to become expert in the many facets of
machine-based pattern recognition as well as in a science do-
main such as atmospheric physics or neuroscience. There
is an abundance of pattern recognition code (in C, Fortran,
Matlab, S-Plus all in evolutionary flux) available for scien-
tists to apply; unfortunately, each algorithm has its own pit-
falls and requires that the data be in a particular format. In
fact, the two areas in which we have spent the most time are
in understanding the scientific problem and in reformatting
and manipulating the data.

The issue of what question to ask for a particular data
oriented problem forms the underpinnings of science and
is well beyond the scope of this paper. However, it does
make sense to understand which questions are possible to
be answered given the current state of machine learning
and the methods of data collection. We have observed that
scientists can be swayed to ask the wrong question in an

�
Supported by NASA Intelligent Systems/IDU program.

attempt to use an available algorithm to derive an answer.
A common example of this is to ask what variables are
most contributing to the observed variance via application
of Principal Component Analysis. This assumes that the
underlying data generation is best represented by a Gaussian
process. A better question but much more difficult to answer
would be to ask how to create a parameterizable model
from which we can infer the meaning behind the observed
variance. It is only through a close collaboration between
machine learning researchers and the domain experts that it
is possible to overcome this difficulty. Once the appropriate
question has been asked, it should be possible to see if any
tools are available to provide a relevant answer. The issue
now becomes one of algorithmic availability, knowing that
the code will be used by an over-committed scientist who
does not have time to debug others’ code, to reformat his
data to fit into a new file format, or time to code the latest
algorithms from scratch.

In our work with Earth and life scientists we have de-
veloped a software framework that provides a graphical de-
piction of the algorithmic steps and allows for the scientists
to manipulate the data and algorithm during data streaming.
This Signal Processing Environment for Algorithmic Devel-
opment (SPEAD) has been applied to hyper-spectral data un-
derstanding as well as pattern recognition for Electromyo-
graphic (EMG) and Electroencephalographic (EEG) data. In
this paper we present lessons learned from the perspective
of machine learning researchers in their efforts to help both
Earth and life scientists with their data domain problems. We
will discuss results in both fields concerning the particular
recognition problems.

The Earth science problem consisted of measuring solar
flux with 384 spectral bands from 380nm to 2000nm. The
goal of the data analysis was to determine what components
in the atmosphere were most affecting the radiative energy



transfer from the Sun to Earth [1]. In the life science project,
we were interested in measuring/monitoring both EMG and
EEG signals from participants that were performing control
tasks. The goal was to create pattern recognition algorithms
which would map the EMG [2] and EEG [3] signals to real-
time robotic control commands. Although both problem
domains were extremely different, the framework addresses
the same underlying issues and thus has proved to be helpful
in both.

In the following sections the system requirements of
the developed framework are described. This is followed
by details on the framework implementation and then the
three applications are discussed and the lessons learned are
summarized.

2 System Requirements Analysis

When we first started considering algorithm development
for Earth and life scientists we looked for a solution which
would allow a user to create new pattern recognition algo-
rithms that would be easy for the domain scientist to ma-
nipulate and at the same time powerful enough to accom-
plish significant tasks. We also wanted a system which was
portable (Linux, Mac OS X, IRIX), would run on single and
multiple machines, had very fast interactive 3-D graphics,
and would support software packages from public to com-
mercial domains (such as Matlab and differential equation
solvers). One of the key successes to our development ef-
forts was to focus on providing a smooth transition between
initial batch oriented static analysis to streaming applications
for use during live data collection. After comparing several
available packages out of the huge number available, we de-
cided to start from scratch while working with scientists in
their problem domains. We considered the Aurora package
from Brown University [4], Sapphire from Lawrence Liver-
more National Laboratory [5], ADaM from the University
of Alabama at Huntsville, Advanced Visual Systems prod-
ucts (AVS), Simulink (The Mathworks), and our own pack-
age SPEAD.

In particular we look at the form of the application
(scripts, or GUI wiring diagrams), the form of the network
nodes, the method of interconnecting the nodes, whether it
is optimized for batch or streaming data, and the visualiza-
tion capabilities. Each package has its strengths to fulfill a
particular niche. Aurora works directly with databases, Sap-
phire works with databases and has C++ nodes accessed via
Python scripts, Simulink is for streaming control work, and
AVS has extensive 3-D data visualization. ADaM has facil-
ities to interface directly with databases and has extensive
image processing capabilities to work with standard formats
such as HDF, however it is more focused on batch applica-
tions than on supporting streaming. None of the packages
seemed to fulfill most of the requirements that we wanted in
a single package.

To achieve an easy-to-program interface, the front end
of the system is graphical, whereby programs are created us-
ing wiring diagrams representative of a data flow method-
ology. We did not want to make the graphical front end a
requirement for using the processing routines and therefore
the front end is used to generate standard Unix scripts that
call the standalone processing routines. These scripts can be
modified after generation without using the graphics or can
be written from scratch.

Another requirement of the system is that we have the
ability to run the wiring network across multiple heteroge-
neous machines by specifying which part of the network
should run on which machines. Our main goal was to keep
everything as simple as possible, including the mechanism
for passing data from one machine to the next. Therefore, we
chose to use socket code and shared memory as our means of
communicating from machine to machine and between pro-
cesses within a single machine respectively. The specifics of
these implementations are hidden from the users through the
use of wiring diagrams.

From the outset of the development it was clear that the
scientists wanted one system which would perform in two
very different modes. At the beginning of data exploration,
it was very common for scientists to use batch oriented file
based methods to analyze their data. Once a working proof-
of-concept algorithm had been developed, scientists turned
to using this algorithm on live streams of data. Clearly
most of batch methods are not immediately usable for stream
analysis. However, many times the transition is difficult
due to computing infrastructure problems (i.e. how to get
the data from here to ‘there’ where ‘there’ may be multiple
machines) rather than creativity of solving the problem.
Two approaches were followed in network creation: a batch
process was used to analyze the data and then windowed to
use in a streaming application, or the algorithm started as
a streaming method. The beauty of using the framework
to answer static questions is that the network that results in
the solution can then be easily used in an on-line method.
In particular, if we establish a network that improves its
estimates with each successive data point, this will then
require no modification when transitioning from the static
to the dynamic case.

Fast interactive graphics were essential for our applica-
tion. The graphics needed to be fast enough to render large
sets as they flowed by and also to provide the capability to
manipulate the plots as the data was changing (i.e. zoom,
rotate, translate in 2-D and 3-D, etc.). We chose to code all
of the graphics using C++ with OpenGL.

One of the most useful capabilities that we have incorpo-
rated into the system is the ability to easily swap algorithm
components. This allows scientists to apply different ideas
and to modify their approaches immediately upon seeing the
results.



To avoid reinventing the wheel for existing routines
which work only in their native environments, we have
a shared memory interface with The Mathwork’s Matlab
software. This links the variable space of our environment
with Matlab’s variable space.

Throughout years of programming signal processing
systems, our experience has been that the most effective lan-
guage is one that requires the least memorization of com-
plicated syntax. In particular, those systems that provide
graphical syntax feedback during programming are less de-
manding in this respect. This allows for novice users to ac-
complish more complicated tasks expediently. The expert
programming community will certainly want the power and
flexibility to program at a low level to achieve very specific
tasks. We are not proposing to change this methodology; we
want to provide greater capabilities to those users who do not
have time to become experts.

3 Wiring Diagram Example

The data flow wiring diagram user interface has been suc-
cessfully employed for years both in the commercial sector
(such as Labview from National Instruments, and Simulink
from The Mathworks) and also in academia (such as Khoros
Cantata from the University of New Mexico). With appro-
priate graphical feedback, this type of interface allows for
novices to program rather complicated systems, and for ex-
perts to design new algorithms. We were inspired both by
Cantata and Labview in that Cantata had each routine as a
separate executable (and function call), and Labview allows
for complicated data structures and for “for” loops. In our
system we decided to separate the flow of the data from the
control and parameter values. Visually, parameter flow is
from left to right (inputs/outputs), while data flow is top to
bottom (reads/writes).

Variable data types are color encoded for type to let the
user know which inputs/outputs may be connected. Also
the user is prevented from connecting inappropriate types
together during the wiring stage. Explicit casting of types
is possible if the user wants to override this behavior. Units
within a network may be grouped together to aid in depiction
and separation of the algorithm. An example of a network
that implements a particle filter [6] for continuous state
tracking is shown in Figure 1. On the far left hand side
of this figure is a list of categories of each of the types of
available units. In this example, data is streamed in and the
particles are used to track how a specified model should be
scaled upon sequential presentation of each data point. The
magnified view of the filter loop is also presented in Figure
1 depicts how easy it is to create a continuous feedback
mechanism within a network.

3.1 Nodule Operation The functional units of a network
are referred to as nodules. Each nodule is a separate exe-

Figure 1: Top image portrays a particle filter system used for
state tracking, the bottom image shows a magnified view of
the filter loop which has feedback

cutable responsible for generating, transforming, or visual-
izing data and/or parameter values. Typically, these are short
(less than 200 lines of code) C++ executables, however any-
thing that can communicate via our property system can be
considered a nodule. For example, we have written several
“mex” functions (C routines accessible in the Matlab script-
ing environment) that permit one or more Matlab instances
to participate in a network session.

Nodule design focused on four functions most nodules
would have to perform: parameter self-description, initial-
ization, interprocess data communication and process shut-
down. Self-description is necessary in a system where an ex-
ternal entity (the visual design environment) must discover
new nodules at runtime and present them to a user for inte-



gration into an algorithm. Upon execution of the algorithm,
nodule subsystems and parameters must be initialized. Nod-
ules intercommunicate diverse forms and quantities of data,
ranging from user-invoked events to infrequent threshold up-
dates to fast-moving windows of data sampled at frequencies
of multiple kilohertz. Nodules were defined to be separate
processes: each started from a Unix shell environment with
command-line parameters, each with access to shared mem-
ory and Unix ports, and each controllable by Unix signals.

Initial values, user invoked events, and threshold up-
dates are handled by the property system, high bandwidth
data communication is handled by shared memory, and pro-
cess control is handled by Unix signal handlers.

3.1.1 Properties Each nodule maintains its own property
tree, which can be thought of as a file system for parameter
values. Each property is declared with a data type, a unique
path, and a default value. Currently supported data types
include the standard C base types, their multi-word (64+
bit) counterparts, and a string type. A property may also
have an associated range, a description, as well as some hint
flags which can used by the visual environment to choose an
appropriate editing widget.

A property is used in much the same way as a normal C
variable would be used (via C++ operator overloading), but
it provides transparent capabilities for an external entity to
set and interact with nodule parameters. When a nodule is
run in “query” mode, its property tree is created with default
values and then written to an XML file. The information in
this file is used by the visual programming environment to
determine how that nodule should appear in the workspace,
create appropriate widgets to edit parameter values, and to
create a high-level description of the nodule for on-line help.

The initial value of any property can be overridden at
the command line by specifying the property’s path and
the new value. A nodule’s properties can be interactively
manipulated during runtime by other nodules. The mech-
anism by which this is accomplished is designed for low-
bandwidth, infrequent communications. Each nodule main-
tains a lightweight server socket which it checks, at the
nodule-writer’s discretion, for requests for property values.
Once a connection is established, changes to property val-
ues are immediately forwarded over the connection to the
requesting nodule.

3.1.2 Shared Memory High-bandwidth data communica-
tion takes place primarily through shared memory, which is
accessed using a platform-independent API that wraps the
operating system-specific details. The primary design cri-
teria for the API were high performance and strict inter-
process locking. At the expense of explicit distribution of
data across machines, the new system achieves practical
throughput of as much as 200MB/s per processor with mod-

ern (circa 2002) multiprocessor PCs running Linux.
Because of the strict locking mechanisms, deadlocks are

possible in certain algorithms. For example, given a data
source, a model construction nodule, and a model evaluation
nodule, imagine the following scenario:

The data source feeds both of the other nodules. The
construction nodule needs to collect 1000 samples before it
will output an initial model. The evaluation nodule needs
a model before it can read from the data stream. The queue
between the data source and the other two nodules only holds
500 samples at a time. The construction nodule will read all
500 samples and wait for more. The evaluation nodule will
not read any of the samples, as it is waiting for a model. The
data source cannot write another sample until the evaluation
nodule has marked the data stream read. The system halts.
We have allowed for the user to create these deadlocks to
provide the maximum flexibility. To alleviate the deadlock
potential, visual debugging tools have been added to the
environment to show where data is queued and for what
memory each nodule is waiting. In addition, queuing, loose
locking and other flow-of-control nodules have been added
to help solve such problems.

3.1.3 Signal Handling Nodule shutdown is triggered by
a Unix “interrupt” signal. The signal is caught by signal-
handling functions (which were initialized in the subsystem
initialization), and a flag is set marking the process done.
System calls that were waiting for a state change, such as
shared memory locking and unlocking, are interrupted and
return an appropriate error code. Most nodules run in a tight
loop accessing shared memory, performing their algorithm
and then checking for completion. Upon completion, the
shared memory and locking resources are deleted. The
signals are delivered to all of the nodules associated with an
algorithm by the visual environment upon user cancellation.
Nodules also detect when no more data will be written to the
shared memories they are reading from, and if no one will be
reading from the shared memories they are writing to. In this
way, it is possible for an algorithm to complete: all nodules
exit when all of the data has been processed.

3.2 Visual Programming Environment Operation The
visual programming environment provides a list of available
nodules, which is generated from the nodule property self
description files explained above. The list is organized
into a hierarchical tree and categories are color encoded to
provide differentiation. This collection of available nodules
is referred to as a “personality” and different personalities
may be loaded, specific to the kind of problem a user wants
to solve. The user can browse through nodule descriptions
by highlighting them in the personality tree, which brings up
an HTML document generated from the self description file.
These documents list the nodule’s properties and data types,



as well as any documentation the author has provided.
Once a user has found an appropriate nodule, it is

dragged-and-dropped into the infinite 2-D workspace. At
this point, it becomes a node in the network. This node may
be connected to other nodes, and the user may right click on
it to bring up a dialog box to edit the nodule’s properties.
One simple, but very powerful, feature is the ability to add
notes to each node. By adding a few comments at each step
of the algorithm, a new user can follow the data flow and
quickly understand how the algorithm works.

Connections are made by dragging from an Output to
an Input (for parameters), or from a Write to a Read (for
shared memory). The connections are currently strictly
type checked to avoid invalid connections. Each output
of a shared memory (Outputs) and of a property (Writes)
is allowed to have multiple connections. Each input to a
shared memory (Inputs) and to a property is restricted to one
connection.

3.3 Script Generation Once a wiring diagram has been
produced, it has the form of a tree with cycles (because loops
are allowed). This tree is then traversed and a script is gen-
erated. Each of the nodules in the network are standalone
executables initiated by the generated script with the speci-
fied initial parameter values. The script is a standard Unix
bash script. There are no timing issues of which block to run
first because blocks communicate with each other via shared
memory with protective locking mechanisms. Thus we al-
low the operating system to determine how the work load
should be processed by having each nodule be a separate
process. The only thing that all nodules have in common is a
central logging facility which allows the user to see what is
happening and is also used when shutting everything down.
It is important to note that this central logger is not a bot-
tleneck since the data flow between processes will be much
much greater than the limited information communicated to
the logger.

4 Applications

We focus on the progression of three research tasks per-
formed by scientists using the framework. The first task in-
volved examining spectra measured by a solar spectral flux
radiometer (SSFR) which was mounted in a plane looking
both up and down at light passing through the atmosphere.
The second application was developing a framework net-
work which would interpret Electromyographic (EMG) sig-
nals as gestures used for computer command. The final ap-
plication was the progressive development of an Electroen-
cephalogram (EEG) pattern recognition system for use in a
brain computer interface (BCI).

4.1 Solar Spectral Flux Radiometer The solar spectral
flux radiometer (SSFR) was designed to measure spectra

from 300nm to 2000nm in 384 discrete bands. This resulted
in 384 digital numbers representing the strength of spectra
associated with each band during an interval of time. Sam-
ples were collected for each band once per minute. A typical
data set consisted of several days worth of data which re-
sulted in a matrix of 6872 by 621 (the scientists interpolate
the 384 bands up to 621). The purpose of this data collec-
tion experiment was to obtain data sufficient to explain vari-
ations in the solar radiative energy budget. These variations
are important to understand in order to know how changes in
atmospheric composition are affecting the energy absorbed
by the Earth’s atmosphere. This in turn will affect climatic
forecasts predictions of global warming.

The SSFR work first focused on identifying the major
sources of variance in the spectral profiles. In order to un-
derstand which components were responsible for the major-
ity of variance, the scientists performed a Principal Compo-
nent Analysis (PCA) before our framework was ready to be
used [1]. The PCA showed several major components, the
first spectral profile related to the variation in cloud cover
(liquid water vapor) (an intuitive result), and the other pro-
files corresponded to Rayleigh scattering, Chappius Ozone,
and oxygen. The remaining variance was not identified. This
approach was cause for concern for several reasons:

� We already know that clouds cause variations in the
transmitted solar energy.

� Our understanding of changes in atmospheric species
(e.g. CO2) and the resultant global climatic changes are
very sensitive to absolute values, a 5% change in CO2
would result in significant changes to climatic forecasts.

� The variation is not the thing we really need to know.

This last item is the most significant because it shows the
progression of thinking based upon the exploratory analysis
of the data. Initially, the scientists thought that we should try
to discover the spectral profiles which are most contributing
to the overall variance. However, the majority of variance is
composed of well known species and the remaining variance
is actually the most interesting and impossible to identify
using PCA. This led us to change the question that we were
trying to answer, which in turn led to changing the data
analysis method.

We are really interested in knowing the quantity of
individual species in the atmosphere which then allows for
us to directly calculate the affects on radiative transfer. This
type of analysis has three requirements:

1. The data is representative of the phenomenon we wish
to study

2. Ideally the measurements are absolute and not relative

3. We can formulate an accurate forward model of the
system that we want to make inferences about.



The first point seems obvious, that if we want to infer
the composition of the atmosphere we should be observ-
ing the atmosphere in some fashion. The more subtle point
here is that the measurements are performed using a rela-
tive measurement instrument that was not designed to mea-
sure absolutes, however, the question we wish to answer re-
ally concerns absolutes. Moreover, the instrument itself may
have unmodeled or unexpected errors which should be iden-
tified before incorrect inferences are made. In the SSFR data
collection, the instrument suffered from a saturation prob-
lem during one day of data collection in one narrow spectral
band. Given the quantity of data collected, this error was not
detectable through visual inspection. However, before ask-
ing the science question, we used the framework to answer
the following question: Is there anything in the data which
seems to be statistically independent from the rest of the data
set? Another way to say this: “Is this data representative of
the underlying atmospheric process or are there other pro-
cesses represented?”

To answer this we used the framework to perform In-
dependent Component Analysis (ICA) requesting that only
two components be formed. The form of ICA that we used
was a Matlab version of FastICA [7]. The results of this are
shown in Figure 2. There is a very dominant peak at the band
that saturated in the first component. The second component
represents the overall trend in the rest of the data. This leads
us to believe that the first step in data analysis should be to
answer the following question:
“Is this data representative of the process that I’m interested
in or are there artifacts that need to be understood?”

Figure 2: Independent component analysis results, top plot
shows saturation anomaly, bottom plot represents average
spectral profile

The network that produced both the PCA and ICA is de-
picted in Figure 3. This network demonstrates our interface
to algorithms which have already been developed for Matlab.

Figure 3: Network used to perform PCA and ICA via Matlab

In this case, we already had PCA and ICA Matlab code avail-
able and we chose to use our own mechanisms for reading in
the data and producing plots.

After having resolved the saturation issue, we felt confi-
dent to ask the next question: what atmospheric constituents
are affecting the spectrum that we are observing? Note that
this is a significantly different question from the typical blind
search commonly presented in the KDD literature. This ap-
proach requires that we formulate a hypothesis as to how
light energy interacts with elements in the atmosphere. Thus
we chose to formulate a new forward model of the atmo-
sphere that allows us to embed this as the likelihood in a
Bayesian formulation. When complete, we will be able to
infer the atmospheric composition from the observed spectra
by calculating the posterior distribution.

We are currently in the process of implementing the
Bayesian method using this forward likelihood model to per-
form the parameterization. The derivation and development
of this method are very time consuming and so we needed
to perform the first steps of initial analysis to lead us to
conclude that the more expensive steps were worth pursu-
ing. Other steps in the algorithm development process which
have to be performed using SPEAD include importing the
data, modifying formats, and designing the data presentation
that best aids the scientists in hypothesis formation.

Before using the collected data and our forward model
to make inferences concerning the atmosphere, we have
started developing an instrument model for improving the
calibration process. The parameters of this instrument model
are updated as data is collected. The following summarizes
the lessons we have learned from this application:

� Ask the right question and then consider the needed
tools/models to answer this question.

� Model noise and anomalies to prevent inappropriate



conclusions

� Data analysis should take into account each step in the
data collection process.

4.2 Electromyographic Gesture Recognition EMG
based gesture recognition has significantly different data
processing requirements from the SSFR data application.
The EMG data that was collected for gesture recognition
typically consisted of 8 to 16 channels collected at 2000
Hz [2]. The first question that we wanted to answer was
“Is it possible to use EMG for controlling a computer
simulation?” This question was too broad to be answered
immediately and therefore had to be broken down into the
following categories:

� Where should electrodes be located to differentiate
gestures?

� Given a set of gestures, what is the natural variability
for nominal behavior?

� What transformation should be done to the data to best
distinguish between gestures?

� What pattern recognition method for data streams pro-
vides the best accuracy? Is it possible for a computer to
recognize EMG based gestures in an everyday setting?

� How much lag is acceptable to a user gesturing to
control a computer?

These questions relate more to experiment formulation
and engineering than to addressing an inferential science
question. However, there are important science questions
which can be intermixed within this process such as: “How
do muscles in the forearm coordinate in order to produce a
keystroke as observed by surface EMG?”

The electrode position question can be answered using
information theoretic practices. For example, we could
repose this question in a couple of different ways:

1. Which channels are most independent for a particular
gesture?

2. In comparing gestures ‘one’ and ‘two’, which channels
show the greatest difference?

In formulating the problem this way, we are able to make
use of ICA to answer question one, and the Kullback-Leibler
distance measure for question two. The network to deter-
mine the statistical difference between four gestures is shown
in Figure 4. The network operates on 11 channels of surface-
sensed forearm EMG, reading data streams containing mul-
tiple instances of finger presses. These “events” are further
broken into time subsections since the acceleration, constant
force and release sections of each event differ statistically

Figure 4: Top: A network used to determine the statistical
distance between four gestures using 11 differential chan-
nels of forearm EMG. Bottom: An expanded view of the
Kullback-Leibler distances between gestures per channel.
Each channel has a 4x4 matrix (row 1, column 1 in the lower
left per channel) of differences comparing one of four ges-
tures against the others.

from each other. The data is reformatted to allow the con-
struction of one histogram per gesture per time subsection
per channel. All of these histograms are compared against
each other using KL distance, and a subset of the resulting
matrices is selected: a 4x4 matrix per channel per time sub-
section showing the distance between each gesture. In the
“statistical distance” plot in Figure 4, the 4x4 matrices for
channel 4 show a particularly high distance between gestures
3 (third finger press) and 4 (fourth finger press). Similarly,
channel 5 is good at making this distinction and better at dis-
tinguishing between gestures 3 and 2 (second finger press).
Channel 2 does not appear to be very good at making any
distinctions. Along the diagonal, the distances are 0, as these
are comparisons of each gesture against itself. Also, none
of these channels are particularly good at distinguishing be-
tween first and second finger presses.



The issue of how to transform the data and which
method to select for recognizing the patterns depends en-
tirely upon the context of the question being asked. There are
ultimately two approaches: black box and model based, and
naturally there are many gradations in between. The black
box method has been very successful in being able to map
inputs to outputs, such is the case with neural networks. If a
question is answered using a black box approach, it is diffi-
cult to make intelligent inferences about the underlying prob-
lem, and is nearly always the case that we start asking ques-
tions concerning the method rather than the problem at hand.
A fully modeled system requires a great deal of mathemati-
cal competence and time to assemble but ultimately may be
the best for further inquiry. Often in proof-of-concept work
we are in a rush to see if the idea is at all feasible. In the case
of EMG pattern recognition it is possible to use a prototype
such as a hidden Markov model in our framework [2]. If our
goal is a feasibility study with no further inquiry required,
then this is a relatively quick way to proceed. The next stage
will be to have as fast a system as possible with as much
accuracy as possible. Inevitably, questions will arise con-
cerning accuracy that will necessitate having some intuitive
model of the underlying system. Our framework has been
used in both manners. In the blind manner we developed a
gesture recognition system using HMMs [8] with a moving
average feature space which worked well enough to provide
a demonstrable system. However to further this work re-
quired that a model be proposed which could be verified via
experiments. Here is the typical sequence of events (some
occurring over several years):

� Pose a question exploring a possibility, try to quickly
see what others have done and extrapolate.

� Preliminary success results in wanting to do best possi-
ble, this raises question what is the best possible?

� Model is formed from intuition gained on working with
black box model, model is parameterized.

� Model evaluation and refinement iterates with new data
and formulations.

This can be translated into a series of questions that
can be answered using our framework for the EMG gesture
recognition problem:

1. Is it possible for a HMM to be trained to recognize
EMG based gestures?

2. What are the best features and HMM configurations to
achieve the greatest accuracy?

3. What is the simplest physiological model that repre-
sents our observations? (muscle coordination)

4. Which muscles can we infer are contracting given our
observations?

Note that although this started as an engineering issue
it evolved to a state of asking an inferential question regard-
ing muscle coordination. These four questions were each
answered by using our framework. The first was answered
by establishing a network which smoothed the data with a
moving average and then fed the resulting transformation
into a HMM. This proved to be successful as a proof-of-
concept but did not yield clues as to what could be done
to improve the system because the underlying physiology
was not explicitly modeled. The second question concern-
ing the best features and HMM configuration has in general
been answered by many researchers via trial and error. How-
ever, a better understanding of the underlying physics (of the
physiology) of the system to be modeled would help provide
an answer. In our work we first started with the trial-and-
error approach and are now progressing to a more physio-
logical based model. This model is what is underlying the fi-
nal question regarding muscle contraction and coordination.
Although the same underlying model may be used across a
population, each individual will have a different parameteri-
zation.

Note that the framework has allowed us to progress from
static analysis of collected EMG data sets, to one which is
used to perform the analysis on-line. This transition process
was painless because we were able to use nearly the same
wiring diagram by changing the source of the data from a
file to the data acquisition (DAQ) card. This allows us to do
live demos without a subject by streaming data from a file as
if it were from a DAQ card. It also allows for data previously
recorded to be modified to test the effects of different types
of perturbations.

The lessons that we have learned from using our frame-
work for this application include:

� Make the transition from batch to streaming analysis as
painless as possible by planning ahead and providing
the appropriate infrastructure

� Try to avoid black-box approaches if further inferences
are to be made

4.3 Electroencephalogram Pattern Recognition In the
Electroencephalogram (EEG) pattern recognition work [3]
64 channels of data were collected at 1000 Hz. The sub-
ject was asked to try to control the movement of a needle on
a control gage. The basic question was: “Is it possible to
obtain two degrees of freedom movement via pattern recog-
nition of EEG signals?” This question is motivated by the
desire to be able to perform two dimensional cursor control
using thought, and would be the first step to having a func-
tioning brain computer interface system. In the neuroscience



literature it is well documented that when a person is at rest,
the EEG energy becomes strong in the mu-rhythm band (8–
12 Hz.); when motion commences, this energy dissipates
which is known as desynchronization. Thus, the first step
in producing the cursor control system seemed to be taking
the signal from the critical electrodes (in our case C3 and C4)
and passing this through a filter at 8.7 Hz (designed in Mat-
lab, the FIR filter was used in our filter nodule). A network
was constructed to accomplish this so that a subject could see
the results on a moving dial. An example of this feedback
produced by the framework is shown in Figure 5. Then we
trained subjects using this streaming network to try to move
the dial. The results were mixed (one subject was very good
at this, several others had difficulty). The data was further
studied off-line to determine if perhaps a coarse grain en-
tropy measure might be more effective. This coarse grained
entropy algorithm was then substituted in place of the filter
during a live data collection experiment, and then the subject
was allowed to train while the threshold values were manipu-
lated to improve training using our property communication
mechanism. This method of dynamically trying different al-
gorithms during a live session proved to be very helpful to
both the neuroscientists and the subjects.

Figure 5: Brain computer interface training provided by
framework which is processing EEG in real-time and pre-
senting results on a dial

Our next step in this work is to use Support Vector
Machine (SVM) classifiers to try to improve the accuracy
of recognizing movement from no-movement. At first this
involves processing data files in batch mode, and then we
will switch over to using SVM during live recording/training
sessions. So far the most important lesson that we have
learned from this work is that it is very useful to support
the ability to swap between different algorithms during a
streaming data collection experiment to see which method

works best with a particular participant.

5 Final Observations

We started this project with the idea of providing both Earth
and life science domain experts with exploratory tools with
which they would then make relevant discoveries. This
‘over-the-fence’ attitude is prevalent in the machine learning
literature and yet is misguided. We are convinced that
through the combination of exploration and domain-based
model development, ground breaking questions can be posed
and answered in an inferential study.

In the development of our framework we have learned
several lessons:

� The flow of data should be easy to change without low-
level programming

� The swapping of algorithms should be easily performed
during streaming

� The data collection process should be modeled and
the risk of making inferences from bad data must be
qualified

� The science questions need to be posed before compu-
tational methods are considered

The first two items have been addressed through the
capabilities of our framework:

� Easy to program graphical wiring diagrams.

� Fast 2-D and 3-D graphics for interaction during
streaming.

� Multi-machine distributed computing support for a het-
erogeneous network.

� Capability to swap algorithms acting on the data stream.

� Support of existing infrastructure such as The Math-
work’s Matlab and LAPACK.

� Graphical syntax checker to reduce burden of memoriz-
ing syntax.

It is our hope that use of the framework will facilitate
the use of careful modeling and analysis of data and the
associated collection process. It is dangerous to provide tools
and think that this is the end solution; ultimately, only close
collaborations provide the scientific end solution.

In the future we plan to make this software available to
the community at large. Our current plans are to increase the
number of available nodules, to complete the implementation
of a Bayesian model for spectral atmospheric inference, and
to integrate other packages.



References

[1] M. Rabbette and P. Pilewskie. Multivariate analysis of
solar spectral irradiance measurements. J. Geophys. Res.,
106(D9):9685–9696, May 2001.

[2] Charles Jorgensen, Kevin Wheeler, and Slawomir Step-
niewski. Bioelectric flight control of a 757 class high fidelity
aircraft simulator. In Proceedings of the World Automation
Congress, 2000.

[3] Leonard J. Trejo, Kevin R. Wheeler, Charles C. Jorgensen,
Roman Rosipal, Sam Clanton, Bryan Matthews, Andrew D.
Hibbs, Robert Matthews, and Michael Krupka. Multimodal
neuroelectric interface development. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, in press,
2003.

[4] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. In Proceedings of the First Biennial Con-
ference on Innovative Database Systems (CIDR0́3), January
2003.

[5] Chandrika Kamath. Sapphire: Large-scale data mining and
pattern recognition. Technical Report UCRL-TB-132076,
Lawrence Livermore National Laboratory, January 1999.

[6] Jun S. Liu and Rong Chen. Sequential Monte Carlo methods
for dynamic systems. Journal of the American Statistical
Association, 93(443):1032–1044, 1998.

[7] A. Hyvrinen. Fast and robust fixed-point algorithms for
independent component analysis. IEEE Transactions on
Neural Networks, 10(3):626–634, 1999.

[8] Lawrence R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. Proceedings
of the IEEE, 77(2):257 – 286, February 1989.


